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This paper is devoted to the development of finite difference methods for the so-
lution of problems involving the three-dimensional kinetic equation with a Coulomb
collision operator. New conservative difference schemes are presented and anal-
ysed. The schemes include a new approximation for mixed derivatives and accurate
treatment of internal separatrix layers. The main advantages of the new schemes
are improved stability and accuracy which, for example, allows calculation of the
ion distribution function in thermonuclear experiments for a wider range of para-
meters. c© 1998 Academic Press
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1. INTRODUCTION

The three-dimensional kinetic equation with a Coulomb collision operator can be used,
for example, to study the evolution of particle distribution functions in thermonuclear fusion
tokamak experiments in the form of the three-dimensional Fokker–Planck equation [1–4].
This is the particular case we shall consider in this paper though the numerical techniques
have wider applications, e.g. for physical problems that can be described by 3D parabolic
equations, which include three phase space variables and time. Other codes using fully
implicit difference schemes to solve the Fokker–Planck equation include those by Giruzzi
[6], Westerhofet al. [7], and Shkarofskyet al. [8].

The tokamak is a torus configuration with a characteristically large magnetic field in the
direction going the long way round (toroidally) and a smaller field going the short way
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FIG. 1. Cross section of a tokamak showing the components of the magnetic field.

round (poloidally); see Fig. 1. The motion of charged particles in the torus is essentially
a rapid gyration about a guiding centre with velocity parallel to the resulting helical field
lines which map out nested flux surfaces. Due to the spatially varying magnetic field there
exist two classes of particle, those that can pass through the high field on the inside edge of
the flux surface and thus continue all the way round and those particles that become trapped
on the low field side. Thus in velocity space there exists a separatrix between these particles
called the trapped/passing boundary (TPB). The fast poloidal motion through the high and
low field, the motion in the toroidal direction and the rapid gyration occur on time scales
much shorter than those for the electromagnetic field variation and the problem can be
reduced in dimension by averaging over the local coordinates of gyro angle, toroidal angle,
and poloidal angle to give orbits characterised by three constants of the motion,v0, θ0, γ0

(speed, a pitch-angle between the velocity vector and the magnetic field, and a flux surface
radius) [4].

In what follows,u is the exact solution,f is the numerical solution, andz is the error
between the two. In general the 3D kinetic equation for the distribution functionu with the
Coulomb collision operator has the form

∂u

∂t
=

3∑
n,m=1

Lnm[u], (1)

where

Lnn[u] = 1√
g

∂

∂xn

(
Ann

∂u

∂xn
+ Bnu

)
(2)

for m= n and

Lnm[u] = 1√
g

∂

∂xn

(
Anm

∂u

∂xm

)
(3)

for m 6= n.
Here

√
g is the Jacobian term andAnm, Bn are the coefficients representing collisions

and also, in our case, external heating terms. The mixed derivative coefficientsAnm in (3)
grow large due the anisotropic nature of the heating causing numerical problems in standard
numerical schemes and thus a new method is proposed.

The outline of the paper is as follows: In Section 2 we describe the construction of the
numerical grid on which these equations are solved. Section 3 introduces the difference
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approximations under consideration and these are applied to the kinetic equation in Sec-
tion 4. Theorems of existence and uniqueness of solutions to the equation are then discussed
in Section 5 followed by stability and convergence theorems in Section 6. In Section 7 we
show that the solution of the difference problem is positive semi-definite (as required for a
distribution function) for certain conditions. Sections 8 and 9 give examples of applications
and performance of the advanced difference schemes.

2. GRID CONSTRUCTION IN CONSTANTS OF MOTION COORDINATES

The principles of grid construction in terms of coordinates formed from the particle
constants of motion should ensure good approximation of the distribution function on
the boundaries and the enclosed area and also allow the calculation of integrals with an
acceptable accuracy. The problem is formulated in an unlimited area of velocity space and
it is important to take into account the fact that coefficients of the Coulomb collision operator
behave differently in different parts of phase space with the proviso that they tend to zero
at large speedsv0.

In transition to the discrete problem for the averaged kinetic equation, it is necessary to
approximate accurately the boundary conditions and conditions at the internal separatrix
layer, so that the approximation of boundary conditions is not of lower order than that
for the operators of the equation. For a Neumann problem (where the derivative of the
grid function is specified at the boundary), or when on the boundary of phase space, the
appropriate coefficient in the equation is degenerate, we shall use a so-called “flow grid”
a half step from the appropriate boundary [1]. We shall also recede a half step from the
separatrix. It is possible to construct an orthogonal grid on a plane (θ0, γ0). The separatrix
for our problem lies in this plane, as illustrated in Fig. 2. For the Dirichlet problem (where
the function is specified at the boundary) we shall use the usual grid with points on the
boundary. The grid can be nonuniform.

FIG. 2. A typical grid in the 2D plane showing an internal separatrix (TPB) for our problem. The boundary
γ0= γ0,max usually has a Dirichlet boundary condition (the function is zero). The other three boundaries have
Neumann conditions (the flux through the boundary is zero).
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We shall designate a grid variablexn, n= 1, 2, 3, as

ω̄n =
{

xn
i : xn

i ∈
[
xn

min, xn
max

]
, i = 0, 1, . . . , Nxn, Nxn + 1

}
,

ωn =
{

xn
i : xn

i ∈
[
xn

min, xn
max

]
, i = 1, . . . , Nxn

}
.

The nearest node of a grid in relation to the boundary of a separatrix layer is moved on a
half-step. An example of a grid in a plane of variables (θ0, γ0) is presented in Fig. 2.

3. DIFFERENCE APPROXIMATION OF DIFFERENTIAL OPERATORS

Application of standard approximations without taking into account the specifics of a
problem may mean that an unacceptable number of nodes on the difference grid is used in
order to reach the required accuracy. Therefore we shall construct special approximations,
taking into account a priori information about the behaviour of the distribution function.

The operator in Eq. (2) may be written as a sum of two components:

Lnn[u] = 1√
g

∂

∂xn

(
Ann

∂u

∂xn
+ ηn Bnu

)
+ 1√

g

∂

∂xn
((1− ηn)Bnu)

= 1√
g

∂

∂xn

(
Un

∂

∂xn
(Vnu)

)
+ 1√

g

∂

∂xn
((1− ηn)Bnu) (4)

with

Un = Ann exp

(
−
∫
ηn Bn

Ann
dxn

)
, Vn = exp

(∫
ηn Bn

Ann
dxn

)
.

The functionηn ∈ [0, 1] can be adjusted in order to raise the accuracy of the difference
approximation. The integro-interpolation method [9] results in the approximation of the
first component of the operatorLnn,(

3(1)
nn [ f ]

)
i =

1

ci h̄xn,i

[
Un,i+1/2

(
Vn,i+1 fi+1− Vn,i fi

hxn,i+1

)
−Un,i−1/2

(
Vn,i fi − Vn,i−1 fi−1

hxn,i

)]
(5)

or (
3(1)

nn [ f ]
)

i =
1

ci h̄xn,i

[
Ann,i+1/2

hxn,i+1
(exp{En,i+1} fi+1− exp{−En,i+1} fi )

− Ann,i−1/2

hxn,i
(exp{En,i } fi − exp{−En,i } fi−1)

]
, xn

i ∈ ωn, (6)

where fi is the grid function,i = 0, . . . , Nxn + 1, hxn,i is the grid-spacing, and ¯hxn,i is the
step between half-integer points of a grid,

En,i = (ηn B)n,i−1/2

Ann,i−1/2
· hxn,i

2
, i = 1, . . . , Nxn,

ci = (
√

ḡ)i , i = 1, . . . , Nxn,

h̄xn,i = hxn,i+1+ hxn,i

2
, i = 1, . . . , Nxn,
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The operator (5) or (6) approximates the first component of the operator (4) to second-order
accuracy. This differencing gives an exact solution for the problemLnn= 0. In many kinetic
problems the solution is close to the kernel of the operator over velocity (i.e., the distribution
is close to a Maxwellian); therefore it is natural to expect improved accuracy for the full
problem (2) when using (6). Numerous calculations have confirmed this.

Appropriate choice of the functionηn in (4) avoids overflow or loss of accuracy in using
operator (6) in the case whereAnn¿ Bn. A suitable choice for the functionηn can be found
by minimising the loss of accuracy in operator3nn, when dealing with extreme values. We
chooseηn from

exp

(
(ηB)n,i−1/2

Ann,i−1/2

hxn,i

2

)/
exp

(
− (ηB)n,i−1/2

Ann,i−1/2

hxn,i

2

)
≤Mn,

and set it such that

ηn,i−1/2 = min

{∣∣∣∣ Ann,i−1/2

Bn,i−1/2

∣∣∣∣ ln Mn

hxn,i
, 1

}
,

which gives 0≤ ηn≤ 1 for Ann¿ Bn andηn= 1 for Ann∼ Bn. Mn can be related to the
accuracy of the computer; e.g., logMn can be equal to half the number of digits in the
mantissa. For solutionsf , close to the Maxwellian distribution, a choice of logMn∼ 3
in the velocity operatorn= 1 andηn= 0 for the other operators gives accurate numerical
results on a modest grid.

For the second componentLnn in (4) it is possible to use well-known second-order
approximations, e.g. centered differencing [9]. However, in the most complicated cases,
when Ann¿ Bn and Bn changes sign, it can be better to apply an approximation with
directed differences, taking into account the sign ofBn at each point on the grid so that

(
3(2)

nn [ f ]
)

i
= 1

ci h̄xn,i
[((1− ηn)Bn)i+1/2((1− δi+1/2) fi+1+ δi+1/2 fi )

− ((1− ηn)Bn)i−1/2((1− δi−1/2) fi + δi−1/2 fi−1)], (7)

with

δi−1/2 =
{

0, if Bn,i−1/2≥ 0,

1, if Bn,i−1/2< 0.

This approximation is obtained with the help of the integro-interpolation method. It has
first-order error but improves the stability of calculations.

Finally the operatorLnn is approximated by the sum of (6) and (7),

(3nn[ f ])i =
(
3(1)

nn [ f ]
)

i +
(
3(2)

nn [ f ]
)

i . (8)

For operators3nm at n 6=m, apart from well-known approximations [9], we propose the
following nonstandard 9-point approximation, which at each point of the grid uses not more
than seven of nine possible nodes (see Fig. 3),
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FIG. 3. Discretisation showing the seven nodes used if bothAnm,i−1/2, j andAnm,i+1/2, j are positive.

(3nm[ f ])i j = 1

2ci j h̄xn,i

[
a+nm,i+1 j

hxm, j+1
( fi+1 j+1− fi+1 j )+

a+nm,i+1 j

hxm, j
( fi j − fi j−1)

− a+nm,i j

hxm, j+1
( fi j+1− fi j )−

a+nm,i j

hxm, j
( fi−1 j − fi−1 j−1)

+ a−nm,i+1 j

hxm, j
( fi+1 j − fi+1 j−1)+

a−nm,i+1 j

hxm, j+1
( fi j+1− fi j )

− a−nm,i j

hxm, j
( fi j − fi j−1)−

a−nm,i j

hxm, j+1
( fi−1 j+1− fi−1 j )

]
,(

xn
i , xm

j

) ∈ ωn × ωm, (9)

where

a+nm,i j = A+nm

(
xn

i−1/2, xm
j

) = a+i j ,

a−nm,i j = A−nm

(
xn

i−1/2, xm
j

) = a−i j ,

A+nm ≡
1

2
[ Anm+ |Anm|] ≥ 0,

A−nm ≡
1

2
[ Anm− |Anm|] ≤ 0.

This approximation is obtained with the help of the integro-interpolation method. Its charac-
teristic feature is that it takes into account the sign ofAnm and in some sense is an analogue
of a directed difference. Such a discretisation of the operator ensures good conditioning of
the equation matrix to give a unique solution as will be shown in Section 5. The operator
3nm[ f ] approximates the initial operator (3) to second order.

We shall introduce the following notation:

â1
nm,i j =

a+nm,i+1 j

hxm, j+1
, â2

nm,i j =
a+nm,i+1 j

hxm, j+1
− a−nm,i+1 j

hxm, j
, â3

nm,i j = −
a−nm,i+1 j

hxm, j
,

â4
nm,i j =

a+nm,i j

hxm, j+1
− a−nm,i+1 j

hxm, j+1
, â6

nm,i j =
a+nm,i+1 j

hxm, j
− a−nm,i j

hxm, j
,



               

SCHEMES FOR 3D KINETIC EQUATIONS 245

â5
nm,i j =

a+nm,i+1 j

hxm, j
+ a+nm,i j

hxm, j+1
− a−nm,i+1 j

hxm, j+1
− a−nm,i j

hxm, j
,

â7
nm,i j = −

a−nm,i j

hxm, j+1
, â8

nm,i j =
a+nm,i j

hxm, j
− a−nm,i j

hxm, j+1
, â9

nm,i j =
a+nm,i j

hxm, j
.

Note that as all coefficientsa+nm,i j are nonnegative, and the coefficientsa−nm,i j are non-
positive, thenâk

nm,i j ≥ 0, k= 1, . . . ,9. This leads to improved stability properties for this
approximation (9). Usinĝak

nm,i j the expression for3nm[ f ] takes the form

(3nm[ f ])i j = 1

2ci j h̄xn,i

[
â1

nm fi+1 j+1− â2
nm fi+1 j + â3

nm fi+1 j−1− â4
nm fi j+1

+ â5
nm fi j − â6

nm fi j−1+ â7
nm fi−1 j+1− â8

nm fi−1 j + â9
nm fi−1 j−1

]
. (10)

(Hereâk
nm= (âk

nm)i j for all k.)
Neumann or Dirichlet boundary conditions can be immediately taken into account by

well-known methods [9–11, 1] in the coefficients of operators (8), (10), retaining second-
order accuracy. In some cases special boundary conditions are required nearv0= v0,min. For
example, Neumann or Dirichlet boundary conditions are usually not adequate atv0= v0,min

for modelling alpha particles in thermonuclear experiments. Zero flux atv0= v0,min leads to
a buildup of alpha particles with low energies, whereas in reality thermalized alpha particles
(helium ash) would be removed from the plasma by processes which are difficult to model
with kinetic codes. Setting the distribution function atv0= v0,min to be zero would give
too few alpha particles atv0= v0,min. The introduction of losses nearv0= v0,min would
require knowledge of a loss coefficient. A very different approach was found to be adequate
for the description of alpha-particle behaviour in experiments. This involves a boundary
condition

1√
g

∂

∂xn

[
3∑

m=1

(
A1m

∂u

∂xm

)
+ B1u

]∣∣∣∣∣
v0=v0,ash

=


1√
g
∂
∂xn

[
B1 f 0

α

]∣∣
v0=v0,ash

, B1 > 0,

0, B1 ≤ 0,
(11)

wherev0,ash is the speed at which particles are considered as lost to ash,v0,ash> 0. The
whole problem is then formulated inv0 ∈ [v0,ash,∞). Equation (11) allows particles to
leave the solution domain and become “helium ash”v0<v0,ash due to Coulomb friction,
but it does not allow a flux into the solution domain from the cold particles.

Equation (7) withηn= 0 can be used to approximate Eq. (11). Forward differencing
allows the solution of the appropriate system of linear algebraic equations.

3.1. Treatment of Separatrices in the Difference Operators

This section is relevant to the particular case being considered which necessitates the use
of a separatrix and can be ignored if internal boundaries are not of interest.

More challenging is the inclusion in the difference operators of additional conditions at
an internal separatrix. For a solution of this problem we shall use the idea of the method
of extending the grid outside the area [12]. We shall continue the grid from each area near
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FIG. 4. An example of the extension of a grid outside of a passing particles region in a plane of variables
(γ0, θ0). The ghost nodes are represented by empty circles.

a separatrix across the separatrix (see Fig. 4). We shall name new nodes as “ghost nodes”
and designate values of the required function at these nodes byf ∗k , k= 1, . . . ,ng, where
ng is the total number of introduced nodes. We shall require thatng is greater than or equal
to the number of conditions that have to be applied at the separatrix. With the help of ghost
nodes and the initial grid nodes we approximate these conditions to a required order of
accuracy. Let the number of used nodes of an initial grid benr , then the approximation
of “conjunction” conditions, which connect initial and ghost nodes, can be written in the
general form

a11 f ∗1 + a12 f ∗2 + · · · + a1ng f ∗ng
= b11 f1+ b12 f2+ · · · + b1nr fnr

a21 f ∗1 + a22 f ∗2 + · · · + a2ng f ∗ng
= b21 f1+ b22 f2+ · · · + b2nr fnr

a31 f ∗1 + a32 f ∗2 + · · · + a3ng f ∗ng
= b31 f1+ b32 f2+ · · · + b3nr fnr .

· · ·

If the number of ghost nodesng is greater than the number of equations, we introduce
additional relations to make the number of equations equal tong. The arbitrariness in
compiling additional relations can be used, for example, to simplify the equations, improve
the accuracy of the approximation, or ensure some behaviour required near the separatrix.
The resulting system of linear algebraic equations can be written in the matrix form

a11 a12 · · · a1ng

a21 a22 · · · a2ng

...
...

. . .
...

an1 ang2 · · · angng




f ∗1
f ∗2
...

f ∗ng

 =


b11

b21

...

bng1

 f1+ · · · +


b1nr

b2nr

...

bngnr

 fnr . (12)

By solving this system, we find a representation of grid function values at ghost nodes using
values at nodes of the initial grid

f ∗k =
nr∑

i=1

cki fi , k= 1, . . . ,ng.

Now, substituting this expansion into the difference operator in place of valuesf ∗k , which
occur near the separatrix, we arrive at an approximation which takes into account the
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conjunction conditions and contains values of the grid function from nodes of the initial
grid only.

It is important to note that, generally speaking, for each difference operator its own system
(12) can be composed (e.g., for 3D kinetic problems in tokamaks, the trapped/passing
boundary condition is discussed in [4]).

4. DIFFERENCE SCHEMES FOR KINETIC PROBLEMS

We shall consider a problem with a time-dependent and unknown function-dependent
differential operatorL, cf. Eqs. (1)–(3),

∂u

∂t
= L(t, u)[u] in D × (0, T],

u = ϕ in D ∪ 0D at t = 0,

l (t, u) = ψ on0D × [0, T].

(13)

HereD is the range of phase variables,0D is its boundary, and 0≤ t ≤ T. We shall represent
operatorL(t, u) as a sum of operators,

L(t, u) = L1+ L2+ L3, (14)

where

L1 = µ1L11+ µ2L22+ L12+ L21

L2 = (1− µ2)L22+ µ3L33+ L23+ L32

L3 = (1− µ1)L11+ (1− µ3)L33+ L13+ L31;

µk ∈ [0, 1] are weights.
Assume that difference approximations3k,3nm of operatorsLk,Lnm, taking into ac-

count boundary conditions on the exterior boundaries and separatrices, are known.
For an approximate solution of problem (13) in time intervaltn−1≤ t ≤ tn+1 we shall use

a two-cycle six-step splitting scheme,

B f n−2/3− f n−1

τ
= 3n

1

(
λ1 f n−2/3+ (1− λ1) f n−1

)
B f n−1/3− f n−2/3

τ
= 3n

2

(
λ2 f n−1/3+ (1− λ2) f n−2/3

)
B f n − f n−1/3

τ
= 3n

3

(
λ3 f n + (1− λ3) f n−1/3

)
(15)

B f n+1/3− f n

τ
= 3n

3

(
λ3 f n+1/3+ (1− λ3) f n

)
B f n+2/3− f n+1/3

τ
= 3n

2

(
λ2 f n+2/3+ (1− λ2) f n+1/3

)
B f n+1− f n+2/3

τ
= 3n

1

(
λ1 f n+1+ (1− λ1) f n+2/3

)
3n

k = 3k(tn, f̃ n), k= 1, 2, 3,
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with λk implicitness weights,τ = tn− tn−1, and f̃ n, which affects the collisional coefficients
in 3n

k, from the explicit step

f̃ n = f n−1+ τ3(tn−1, f n−1
)

f n−1.

The system (15) can be rewritten in the more convenient form

(
1

τ
B − λ13

n
1

)
f n−2/3 =

(
1

τ
B + (1− λ1)3

n
1

)
f n−1

(
1

τ
B − λ23

n
2

)
f n−1/3 =

(
1

τ
B + (1− λ2)3

n
2

)
f n−2/3

...(
1

τ
B − λ13

n
1

)
f n+1 =

(
1

τ
B + (1− λ1)3

n
1

)
f n+2/3. (16)

A suitable choice for the grid function on thenth layer is (f n+1+ f n−1)/2.
The scheme (16) is conservative and approximate to second order over time and space

if the operatorsB and3k are conservative, have the second order of approximation on a
spatial variable, and allλk= 0.5. Replacement of an explicit step, for example onf̃ n= f n−1

is possible. It will result in a scheme of first-order approximation overτ , but will improve
the stability.

General ideas of the splitting algorithms are discussed in, for example, Refs. [9, 10]. One
of the new features in the proposed difference scheme is the inversion of a two-dimensional
operator on each step, as

31 = µ1311+ µ2322+312+321

32 = (1− µ2)322+ µ3333+323+332

33 = (1− µ1)311+ (1− µ3)333+313+331.

The simultaneous inversion over two variables can be performed using, for example,
Gaussian elimination for a sparse matrix. The required number of operations on, for example,
the first step isO(Nx1 N2

x2 Nx3), whereNxk is the number of nodes of the grid in thekth
direction andNx2 is the bandwidth of the matrix. One of the basic advantages of such an
approach is the possibility of implicit use in the scheme of operators with mixed derivatives,
which makes the difference scheme more stable than with an explicit occurrence of mixed
derivatives.

It is necessary to note that the decomposition of an operator in more simple operators
can have drawbacks. For example, the two-dimensional operators may not retain the elliptic
character of an initial three-dimensional operator. However, decomposition is necessary, as
modern computer facilities do not yet allow us to carry out for large grids an inversion of
an operator over three phase variables at once.

Previous work has investigated the properties of difference scheme (16) for positively
semi-definite operators3k in the Hilbert space of grid functionsL2,h [10]. However, in the
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kinetic equation the operators3k can change sign because of the presence of first-order
derivatives. Therefore, the standard results are not applicable. Also, from a physical point
of view, for the problems under consideration, the properties of the numerical solution in
Banach spaceL1,h are of interest, as, for example,‖ f ‖L1,h is the difference analogue of
particle density. Despite the complexities mentioned, for some classes of kinetic problems
it has been possible to prove theorems on the existence and uniqueness of a solution of
the difference problem with the help of some advancements to existing methods [9, 1].
It has also been possible to prove theorems about the stability and convergence of the
difference scheme in Banach spaceL1,h and about the preservation of sign of the solution
of the difference problem (e.g. required for a distribution function which should never be
negative). The results are summarised in the following sections.

5. EXISTENCE AND UNIQUENESS OF THE SOLUTION

OF THE DIFFERENCE PROBLEM

All equations in the system of Eqs. (16) have the same structure; therefore it is sufficient
to investigate the existence and uniqueness of the solution to one of them, for example, the
first, (

1

τ
B − λ13

n
1

)
f n−2/3 =

(
1

τ
B + (1− λ1)3

n
1

)
f n−1, (17)

31 = µ1311+ µ2322+312+321.

To simplify we shall use the notation

f̂ ≡ f n−2/3, f ≡ f n−1, λ ≡ λ1, 3 ≡ 3n
1.

Then formula (17) becomes(
1

τ
B − λ3

)
f̂ =

(
1

τ
B + (1− λ)3

)
f. (18)

For operatorB we consider the operator

(B f )i j ≡ fi j + e

ci j
(4 fi j − fi−1 j − fi+1 j − fi j−1− fi j+1), (19)

wheree is a nonnegative constant factor which has the same dimensions asci j . The unit
operatorB≡ I is recovered fore= 0. With the help of a Taylor expansion around the point
(i, j ) it is possible to show that, if the functionu has continuous derivatives to the required
order, thenB( f̂ − f )/τ approximates derivative∂u/∂t to first order over time and to second
order over space (for a nonuniform grid the second order applies at some point that need
not coincide with a grid point).

The following theorems of existence and uniqueness of the solution of the system of
linear algebraic equations (18) are valid.
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THEOREM1. Let the coefficients of the problem(13)satisfy the inequalities

µ1

h̄x1,i

U1,i−1/2

hx1,i
V1,i−1 ≥ 1

2

(
â8

12,i j

h̄x1,i
+ â6

21,i j

h̄x2, j

)
, i = 1, . . . , Nx1 + 1; j = 1, . . . , Nx2,

µ1

h̄x1,i

U1,i+1/2

hx1,i+1
V1,i+1 ≥ 1

2

(
â2

12,i j

h̄x1,i
+ â4

21,i j

h̄x2, j

)
, i = 0, . . . , Nx1; j = 1, . . . , Nx2,

(20)
µ2

h̄x2, j

U2, j−1/2

hx2, j
V2, j−1 ≥ 1

2

(
â6

12,i j

h̄x1,i
+ â8

21,i j

h̄x2, j

)
, i = 1, . . . , Nx1; j = 1, . . . , Nx2 + 1,

µ2

h̄x2, j

U2, j+1/2

hx2, j+1
V2, j+1 ≥ 1

2

(
â4

12,i j

h̄x1,i
+ â2

21,i j

h̄x2, j

)
, i = 1, . . . , Nx1; j = 0, . . . , Nx2,

and

λ

ci j

[
µ1

h̄x1,i

(
U1,i+1/2

hx1,i+1
(V1,i+1− V1,i )− U1,i−1/2

hx1,i
(V1,i − V1,i−1)

)
+ µ2

h̄x2, j

(
U2, j+1/2

hx2, j+1
(V2, j+1− V2, j )− U2, j−1/2

hx2, j
(V2, j − V2, j−1)

)]
≤ 0,

i = 1, . . . , Nx1; j = 1, . . . , Nx2; (21)

then the set of Eqs.(18)with the unit operatorB≡ I has a unique solution for anyτ >0.

The conditions (20) mean that second-order derivative coefficientsânn dominate the
mixed derivative coefficientŝanm, n 6=m. In general, if the conditions (20) are not valid,
this theorem of existence and uniqueness can still be proved, but with a restriction on the
time step. The proof of Theorem 1 will be done simultaneously with that of Theorem 2.

THEOREM2. Let the time stepτ satisfy the conditions

1

τ
≥ −λ

e

(
µ1

h̄x1,i

U1,i−1/2

hx1,i
V1,i−1− 1

2

(
â8

12,i j

h̄x1,i
+ â6

21,i j

h̄x2, j

))
,

i = 1, . . . , Nx1 + 1; j = 1, . . . , Nx2,

1

τ
≥ −λ

e

(
µ1

h̄x1,i

U1,i+1/2

hx1,i+1
V1,i+1− 1

2

(
â2

12,i j

h̄x1,i
+ â4

21,i j

h̄x2, j

))
,

i = 0, . . . , Nx1; j = 1, . . . , Nx2,
(22)

1

τ
≥ −λ

e

(
µ2

h̄x2, j

U2, j−1/2

hx2, j
V2, j−1− 1

2

(
â6

12,i j

h̄x1,i
+ â8

21,i j

h̄x2, j

))
,

i = 1, . . . , Nx1; j = 1, . . . , Nx2 + 1,

1

τ
≥ −λ

e

(
µ2

h̄x2, j

U2, j+1/2

hx2, j+1
V2, j+1− 1

2

(
â4

12,i j

h̄x1,i
+ â2

21,i j

h̄x2, j

))
,

i = 1, . . . , Nx1; j = 0, . . . , Nx2,
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and

1

τ
>

λ

ci j

[
µ1

h̄x1,i

(
U1,i+1/2

hx1,i+1
(V1,i+1− V1,i )− U1,i−1/2

hx1,i
(V1,i − V1,i−1)

)
+ µ2

h̄x2, j

(
U2, j+1/2

hx2, j+1
(V2, j+1− V2, j )− U2, j−1/2

hx2, j
(V2, j − V2, j−1)

)]
,

i = 1, . . . , Nx1; j = 1, . . . , Nx2, (23)

then the set of Eqs.(18) with operatorB, defined by(19) with e> 0, has a unique sol-
ution.

Before passing to a proof of Theorems 1 and 2 we make four remarks.

Remark1. The theorems are formulated for the caseηn= 1. However, they are easily
generalized for the caseηn 6= 1 (see Eq. (4)), and, if expression (7) is used to approximate
the first derivatives, then less rigid restrictions onτ appear in Theorem 2.

Remark2. Clearly, for any bounded coefficients of the equation, it is always possible
to specifyτ such that inequalities (22) and (23) are valid. If the right-hand side of any
inequality is negative, that inequality should be excluded from consideration, as it does not
impose restrictions onτ .

Remark3. In the “worst” case, magnitudes in the right-hand side of (22) have order
h−2; nevertheless one may expect that the restriction onτ is weaker than in, e.g. explicit
schemes, as is apparent from consideration of properties at every point of the grid. This
supposition proves to be true by calculations.

Remark4. As will be seen from the proof of the theorems, the “directed” approximation
of mixed derivatives offered in the present work (Eq. (10)), gives “least” restriction onτ

when compared with standard approximations.

The proofs of Theorems 1 and 2 are now done simultaneously. We shall consider a case
when the boundary conditions at a separatrix change neither the approximation (in terms
of number and place of grid points used) nor the properties of operator coefficients. (In
general, conditions (20)–(23) can vary and the operatorB may need to be changed.)

Proof. The set of Eqs. (18) can be written in the matrix form

T f̂ = S f.

The matricesT ≡ (B/τ − λ3) and S≡ (B/τ + (1− λ)3) have a banded structure; the
nonzero elements, for a case when the boundary conditions at a separatrix do not change
patterns of operators, fall only on three diagonal bands, each with a width of not more than
three elements

t11 t12 0 · · · t1N+1 t1N+2 0 · · · 0 0 0
t21 t22 t23 · · · t2N+1 t2N+2 t2N+3 · · · 0 0 0
...

...
. . . · · · ...

...
. . . · · · ...

...
. . .

· · · tkk−N−1 tkk−N tkk−N+1 · · · tkk−1 tkk tkk+1 · · · tkk+N−1 tkk+N tkk+N+1 · · ·
· · · ...

...
. . .

...
...

. . .
...

...
. . . · · ·

· · · · · · 0 0 0· · · 0 tP P−N−1 tP P−N · · · 0 tP P−1 tP P


.
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Here P= Nx1 Nx2 is the total number of points of a gridω1 × ω2 andN is the number of
points over one of the directions (the band width is 3N). For now letN= Nx2. Values of in-
dexes intkl are calculated usingi, j as:k= (i − 1)Nx2 + j, i = 1, . . . , Nx1, j = 1, . . . , Nx2;
l = (i ′ − 1)Nx2 + j ′, wherei ′, j ′ are nodes, included in the pattern of the operator3 at point
i, j .

According to the approximations (8), (10) of the differential operators, the elements of a
matrix T are

tkk = 1

τ
+ 4e

τci j
+ λ

ci j

[
µ1

h̄x1,i

(
U1,i+1/2

hx1,i+1
+ U1,i−1/2

hx1,i

)
V1,i

+ µ2

h̄x2, j

(
U2, j+1/2

hx2, j+1
+ U2, j−1/2

hx2, j

)
V2, j − 1

2

(
â5

12,i j

h̄x1,i
+ â5

21,i j

h̄x2, j

)]

tkk−1 = − e

τci j
− λ

ci j

[
µ1

h̄x1,i

U1,i−1/2

hx1,i
V1,i−1− 1

2

(
â8

12,i j

h̄x1,i
+ â6

21,i j

h̄x2, j

)]

tkk+1 = − e

τci j
− λ

ci j

[
µ1

h̄x1,i

U1,i+1/2

hx1,i
V1,i+1− 1

2

(
â2

12,i j

h̄x1,i
+ â4

21,i j

h̄x2, j

)]

tkk−N = − e

τci j
− λ

ci j

[
µ2

h̄x2, j

U2, j−1/2

hx2, j
V2, j−1− 1

2

(
â6

12,i j

h̄x1,i
+ â8

21,i j

h̄x2, j

)]

tkk+N = − e

τci j
− λ

ci j

[
µ2

h̄x2, j

U2, j+1/2

hx2, j
V2, j+1− 1

2

(
â4

12,i j

h̄x1,i
+ â2

21,i j

h̄x2, j

)]

tkk−N−1 = − λ

2ci j

[
â9

12,i j

h̄x1,i
+ â9

21,i j

h̄x2, j

]

tkk−N+1 = − λ

2ci j

[
â3

12,i j

h̄x1,i
+ â7

21,i j

h̄x2, j

]

tkk+N−1 = − λ

2ci j

[
â7

12,i j

h̄x1,i
+ â3

21,i j

h̄x2, j

]

tkk+N+1 = − λ

2ci j

[
â1

12,i j

h̄x1,i
+ â1

21,i j

h̄x2, j

]
.

Matrix S has the same structure as matrixT , with elementsskl differing from tkl only in
that before the square brackets the sign is opposite and the factorλ changes to (1− λ).

We shall show that the matrixT is anM-matrix. A matrixA= (ai j ) is anM-matrix, if it
is nondegenerate,ai j ≤ 0 for all i 6= j andA−1= (a−1

i j ) is nonnegative, that isa−1
i j ≥ 0 [13].

Therefore, ifT is anM-matrix, it is nondegenerate. Then for any right-hand sideF there
is a unique solution of the equationT f̂ = F , and thus also the set of equations (18).

To prove thatT is anM-matrix it is enough to show thatT has nonpositive nondiagonal
elements and has strict diagonal dominance [13].



            

SCHEMES FOR 3D KINETIC EQUATIONS 253

The nondiagonal elements of matrixT are tkk−1, tkk+1, tkk−N, tkk+N, tkk−N−1, tkk−N+1,

tkk+N−1, tkk+N+1. The nonpositivity oftkk−1, tkk+1, tkk−N, tkk+N follows from conditions
(20) or (22), and nonpositivity oftkk−N−1, tkk−N+1, tkk+N−1, tkk+N+1 from the method of
approximating the mixed derivatives, so that the first requirement forT to be anM-matrix
is satisfied.

The final requirement is to check the elements ofT for strict diagonal dominance, that is

|tkk| >
P∑

l=1
l 6=k

|tkl |, k= 1, . . . , P.

From (20) or (22)

P∑
l=1
l 6=k

|tkl | =
P∑

l=1
l 6=k

−tkl = 4e

τci j
+ λ

ci j

 µ1

h̄x1,i

(
U1,i+1/2

hx1,i+1
V1,i+1+ U1,i−1/2

hx1,i
V1,i−1

)

+ µ2

h̄x2, j

(
U2, j+1/2

hx2, j+1
V2, j+1+ U2, j−1/2

hx2, j
V2, j−1

)

− 1

2h̄x1,i

9∑
p=1
p6=5

(−1)pâp
12,i j −

1

2h̄x2, j

9∑
p=1
p6=5

(−1)pâp
21,i j

 .
Taking into account (21) or (23) and that

9∑
p=1
p6=5

(−1)pâp
nm,i j = â5

nm,i j ,

we obtain

P∑
l=1
l 6=k

|tkl | < 1

τ
+ 4e

τci j
+ λ

ci j

[
µ1

h̄x1,i

(
U1,i+1/2

hx1,i+1
V1,i + U1,i−1/2

hx1,i
V1,i

)

+ µ2

h̄x2, j

(
U2, j+1/2

hx2, j+1
V2, j + U2, j−1/2

hx2, j
V2, j

)
− 1

2h̄x1,i
â5

12,i j −
1

2h̄x2, j
â5

21,i j

]
= tkk = |tkk|.

Thus,T is anM-matrix and Theorems 1 and 2 are proved.
From Theorems 1 and 2, existence and uniqueness of the solution of the difference

problem (16) follows. In a nonlinear case, when the coefficients of the equation depend
on the function being solved for, the time step can become dependent on the number of
the time layer (as it is probably necessary to selectτ for each f̃ ). Therefore, for nonlinear
problems this method of proof does not guarantee that it is possible to reach a given time
with a finite number of steps. Thus in a nonlinear case, existence and uniqueness can only
be proven for a small time interval using this method.
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6. STABILITY AND CONVERGENCE

First, we shall prove the following theorem.

THEOREM3. Let T be an M-matrix, f̂ be the solution of the equation T̂f = F1, and f̃
be the solution of the equation T̃f = F2,with |F1| ≤ F2 valid for all the vector components.
Then| f̂ | ≤ f̃ .

Proof. We shall consider a vectorv= f̂ + f̃ . It is the solution of the equationTv=V ,
whereV = F1+ F2. The vectorV has nonnegative components,

V = F1+ F2 ≥ F2− |F1| ≥ 0.

Further, asT is an M-matrix, it is monotonic [13]; that is,Tv≥ 0 impliesv≥ 0. Then
− f̃ ≤ f̂ .

We shall considerw= f̂ − f̃ . It is the solution of the equationTw=W, where

W = F1− F2 ≤ |F1| − F2 ≤ 0.

We similarly conclude thatw≤ 0 and thereforef̂ ≤ f̃ . Then| f̂ | ≤ f̃ , proving Theorem 3.

Next we consider a Banach space of grid functionsL1,h with a norm

‖ f ‖ =
Nx1∑
i=1

Nx2∑
j=1

Nx3∑
k=1

| fi jk |ci jk h̄x1,i h̄x2, j h̄x3,k. (24)

In kinetic problems this may represent an integral over velocity space coordinates to give
the density of particles in geometric space and therefore, for this particular norm, a study
of stability and convergence properties is of importance.

THEOREM4. Let the coefficients of an initial problem(13) satisfy the inequalities(20),
(21). Then in the Banach space of grid functions with norm(24) the scheme(16)withB= I
is absolutely stable forλk= 1, k= 1, 2, 3, and conditionally stable for0≤ λk< 1, k= 1,
2, 3. Also, if the exact solution u of a problem(13) in each of the areas divided by the
separatrix has continuous derivatives and bounded derivatives of the required order, then
the scheme(16) converges and has accuracy

‖zn+1‖ = O(τ p + h2), n = 1, 3, 5, . . . ,

where h= maxk=1,2,3 maxi=1,...,Nxk hxk,i p= 2 for λk= 1/2, k= 1, 2, 3; p= 1 otherwise.

Proof. The error of solution of a difference problem is

zn = f n − un. (25)

We shall note that atn= 0 (i.e., t = 0), and, for alln, at boundary points of a grid for a
Dirichlet problem,zn= 0.

We shall consider the first equation from (16). By substituting (25) in it with the appro-
priate time index, we obtain((

1

τ
I − λ3

)
ẑ

)
i jk

=
((

1

τ
I + (1− λ)3

)
z

)
i jk

+ ψn
i jk , (26)
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whereψn
i jk is the error in approximating the first equation in a decomposed differential

problem by use of the difference equation. In a proof of stability it is possible to consider
ψn

i jk as some known right-hand side.
As well as Eq. (26), we shall consider the equation((

1

τ
I − λ3

)
ŵ

)
i jk

=
((

1

τ
I + (1− λ)3

)
|z|
)

i jk

+ ∣∣ψn
i jk

∣∣. (27)

If the scheme is not purely implicit, that isλ<1, it is necessary to impose a restriction on
τ . We shall require that 1/τ is not less than the maximum of the moduli of the diagonal
coefficients of matrix(1− λ)3. In this case the right-hand side (27) will be nonnegative,
as all elements of matrix(I/τ + (1− λ)3) will be nonnegative. For the implicit scheme
the restriction onτ is not required.

From Theorem 3, taking into account that(I/τ − λ3) is anM-matrix, we find

0≤ |zi jk | ≤ wi jk . (28)

We sum Eqs. (27) with weightci jk h̄x1,i h̄x2, j h̄x3,k. Since operator3 is conservative, (a) the
λ3 term on the left-hand side sums to zero for Neumann boundary conditions or positive
terms for Dirichlet boundary conditions and (b) the(1− λ)3 term on the right-hand side
sums to zero or results in nonpositive components. This gives

Nx1∑
i=1

Nx2∑
j=1

Nx3∑
k=1

ŵi jk ci jk h̄x1,i h̄x2, j h̄x3,k ≤ ‖z‖ + τ‖ψn‖.

Then, using (28),

‖ẑ‖ ≤ ‖z‖ + τ‖ψn‖. (29)

The inequality (29) means the first equation in (16) is stable. The stability of the remaining
equations follows. Substituting an inequality of the form (29) in the inequality for the last
equation of (16), we have

‖zn+1‖ ≤ ‖zn−1‖ + τ
6∑

l=1

∥∥ψn
l

∥∥, n = 1, 3, 5, . . . , (30)

whereψn
l is the error in approximating thel th equation in a decomposed differential problem

using the difference equation. Taking into account‖z0‖=0, inequalities (30) give

‖zn+1‖ ≤ T

2
max

n′=1,...,(n+1)/2

6∑
l=1

∥∥ψn′
l

∥∥, n = 1, 3, 5, . . . , (31)

whereT= τ(n+ 1). Equation (31) means the scheme (16) in the Banach space of grid
functions with norm (24) is stable.

To prove the convergence of the difference scheme in Banach space we shall use a
modification of an existing technique [9]. We shall present errors of approximationψn

k as

ψn
l = ψ

◦
n
l + ψ

∗
n
l , l = 1, . . . ,6,

6∑
l=1

ψ
◦

n
l = 0.
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We shall for this purpose take

ψ
◦

n
l = B

[
τ

2

((
l

m
− 1

)2

−
(

l − 1

m
− 1

)2
)
∂2un

∂t2

]

+3l

[
λl τ

(
l

m
− 1

)
∂un

∂t
+ (1− λl )τ

(
l − 1

m
− 1

)
∂un

∂t

]
, l = 1, 2, 3,

ψ
◦

n
7−l = −ψ

◦
n
l , l = 1, 2, 3, m= 3.

Then

ψ
∗

n
l = −B

[
un+l/m−1− un+(l−1)/m−1

τ
− τ

2

((
l

m
− 1

)2

−
(

l − 1

m
− 1

)2
)
∂2un

∂t2

]

+3l

[
λl

(
un+l/m−1− τ

(
l

m
− 1

)
∂un

∂t

)
+ (1− λl )

(
un+(l−1)/m−1− τ

(
l − 1

m
− 1

)
∂un

∂t

)]
, l = 1, 2, 3,

ψ
∗

n
7−l = −B

[
un−(l−1)/m+1− un−l/m+1

τ
+ τ

2

((
l

m
− 1

)2

−
(

l − 1

m
− 1

)2
)
∂2un

∂t2

]

+3l

[
λl

(
un−(l−1)/m+1+ τ

(
l

m
− 1

)
∂un

∂t

)
+ (1− λl )

(
un−l/m+1+ τ

(
l − 1

m
− 1

)
∂un

∂t

)]
, l = 3, 2, 1, m= 3.

We shall present the error of solution asz= ζ + ξ , whereζ satisfies the conditions

B ζ
n+ l

m−1− ζ n+ l−1
m −1

τ
= ψ
◦

n
l , l = 1, 2, 3,

B ζ
n− l−1

m +1− ζ n− l
m+1

τ
= ψ
◦

n
7−l , l = 3, 2, 1,

ζ 0 = 0.

Taking the sum of these equations we obtain

Bζ n = τ
3∑

l ′=1

ψ
◦

n
l ′

Bζ n+1 = 0, n = 1, 3, 5, . . . ;
that is,zn+1= ξn+1 for n= 0, 1, 3, 5, . . . and

ζ n+ l
m−1 = B−1

(
τ

l∑
l ′=1

ψ
◦

n
l ′

)
, l = 1, 2, 3,

ζ n− l−1
m +1 = B−1

(
τ

3∑
l ′=1

ψ
◦

n
l ′ + τ

7−l∑
l ′=4

ψ
◦

n
l ′

)
= B−1

(
τ

7−l∑
l ′=1

ψ
◦

n
l ′

)
, l = 3, 2, 1.

(Note thatB−1 exists, sinceB is anM-matrix.)
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Then, substitutingz= ζ + ξ in equations forz, we obtain a problem forξ , distinguished
from the problem forz only by the fact thatψn

l are substituted by

ψ̃
n
l = ψ

∗
n
l +3l

[
λlB−1

(
τ

l∑
l ′=1

ψ
◦

n
l ′

)
+ (1− λl )B−1

(
τ

l−1∑
l ′=1

ψ
◦

n
l ′

)]
, l = 1, 2, 3,

ψ̃
n
7−l = ψ

∗
n
7−l +3l

[
λlB−1

(
τ

7−l∑
l ′=1

ψ
◦

n
l ′

)
+ (1− λl )B−1

(
τ

6−l∑
l ′=1

ψ
◦

n
l ′

)]
, l = 3, 2, 1.

From the stability of the difference scheme, an evaluation of the form of (31) forξ is

‖ξn+1‖ ≤ T

2
max

n′=1,...,(n+1)/2

6∑
l=1

∥∥ψ̃n′
l

∥∥, n = 1, 3, 5, . . . .

Taking into account the equality‖zn+1‖=‖ξn+1‖, n= 1, 3, 5, . . . , we obtain, a priori, an
evaluation for the error of solution,

‖zn+1‖ ≤ T

2
max

n′=1,...,(n+1)/2

6∑
l=1

∥∥ψ̃n′
l

∥∥, n = 1, 3, 5, . . . ,

or, using the boundedness of partial derivatives,

‖zn+1‖ = O(τ p + h2), n = 1, 3, 5, . . . ; (32)

p= 2 atλ= 1/2; p= 1 otherwise. Equation (32) means the solution of the difference
scheme will converge to the solution of the differential problem in Banach space with
the norm (24). Theorem 4 is proved.

THEOREM5. Letτ satisfy the inequalities(22), (23). Then in the Banach space of grid
functions with norm(24) the scheme(16) with an operatorB, defined by(19) with e> 0,
is stable atλk= 1, k= 1, 2, 3. Also if the exact solution u of a problem(13) in each of the
areas divided by a separatrix is smooth(i.e., the derivatives to some order are continuous),

the scheme(16) converges and has accuracy

‖zn+1‖ = O

(
h2

τ
+ τ + h2

)
, n = 1, 3, 5, . . . ,

h= maxk=1,2,3;i=1,...,Nxk hxk,i .

Proof. In contrast to the proof of Theorem 4, the equation for the error here has the
form ((

1

τ
B −3

)
ẑ

)
i jk

=
(

1

τ
Bz

)
i jk

+ ψn
i jk .

Consider equation ((
1

τ
B −3

)
ŵ

)
i jk

=
(∣∣∣∣1τ Bz

∣∣∣∣)
i jk

+ ∣∣ψn
i jk

∣∣.
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As before one can show that

0≤ |zi jk | ≤ ŵi jk . (33)

Summing the equations forw with weightci jk h̄x1,i h̄x2, j h̄x3,k and taking into account that
operator3 is conservative, we come to the inequality

‖ŵ‖ +
Nx1∑
i=1

Nx2∑
j=1

Nx3∑
k=1

e(4ŵi jk − ŵi−1 jk − ŵi+1 jk − ŵi j−1k − ŵi j+1k)h̄x1,i h̄x2, j h̄x3,k

≤‖z‖ + τ‖ψn‖ +
Nx1∑
i=1

Nx2∑
j=1

Nx3∑
k=1

e|4zi jk − zi−1 jk − zi+1 jk − zi j−1k − zi j+1k|h̄x1,i h̄x2, j h̄x3,k.

With grid functionsŵi+1 jk andzi+1 jk we shall construct continuously differentiable func-
tionsŵ andz with bounded partial derivatives of the second order. Then at some point

|4ŵi jk − ŵi−1 jk − ŵi+1 jk − ŵi j−1k − ŵi j+1k| ≤ M1h2

|4zi jk − zi−1 jk − zi+1 jk − zi j−1k − zi j+1k| ≤ M2h2

and, hence,

‖ŵ‖ ≤ ‖z‖ + Mh2+ τ‖ψn‖ = ‖z‖ + τ
(

M
h2

τ
+ ‖ψn‖

)
.

Then, taking into account (33),

‖ẑ‖ ≤ ‖z‖ + τ
(

M
h2

τ
+ ‖ψn‖

)
. (34)

Substituting an inequality of the form (34) in an inequality for the last equation of scheme
(16) and excluding‖zn−1‖, we find

‖zn+1‖ = O

(
h2

τ
+ max

n′=1,...,(n+1)/2

6∑
l=1

∥∥ψn′
l

∥∥) = O

(
h2

τ
+ τ + h2

)
,

n= 1, 3, 5, . . . , which proves the stability (in the sense that the error is limited) and con-
vergence of scheme (16) ath2/τ + τ + h2→ 0 in the Banach space of grid functions with
norm (24). Theorem 5 is proved.

Remark1. It is not possible to prove convergence for the case whereh2/τ is not small
using this method (although it is possible to state the proximity of solutions of difference
and differential problems for a small time interval). Moreover, in this case we failed to prove
convergence using both methods of power inequalities and a priori estimations. However,
the kinetic problems in many cases satisfy the inequalities (22), (23) forτ ∼ h2−ε, ε >0,
and it is possible to choose, for example,τ = h2−ε, satisfying inequalities (22), (23), and
h2/τ→ 0.
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Remark2. As well as analytic estimates, numerical study of the stability and conver-
gence of scheme (16), including comparison with analytic solutions and with calculations
from two-dimensional codes, has been carried out. Research has shown that, for the implicit
scheme, the restrictions onτ andh2/τ in Theorem 5, are probably a corollary of the method
of proof. Violation of these restrictions atλk= 1 only resulted in negative values emerging
in the solution at largex1 (i.e., large speed), even for the case whereB= I. However, the
development of instability in the model problems being considered was not observed.

7. PRESERVATION OF THE SIGN OF THE SOLUTION

OF THE DIFFERENCE PROBLEM

For our application the unknown function in the differential problem is the distribution
function of particles, or, using the terminology of probability theory, a probability density.
The distribution function must be nonnegative. An important question is whether the solution
of the difference problem retains this property from one time layer to the next. The following
theorems are valid.

THEOREM6. Let the coefficients of the problem(13) satisfy inequalities(20), (21) and
let the initial condition be nonnegativity, f 0≥ 0. Then atλk= 1, k= 1, 2, 3, for scheme
(16) withB= I,

f ≥ 0, (35)

for all whole and fractional time layers. If0≤ λk< 1, k= 1, 2, 3, the inequalities(35)
are valid for some smallτ .

Proof. As before, the time-advancement equation for a new time-layer looks like

T f̂ = S f,

whereT is anM-matrix. ThenT−1 exists,

f̂ = T−1S f,

and the elements ofT−1 are nonnegative. Thus, ifS f has nonnegative components,f̂ will
be nonnegative.

At λk= 1, k= 1, 2, 3, the operatorS is

S= 1

τ
I.

Therefore, if f ≥ 0, S f≥ 0 for anyτ .
For 0≤ λk< 1, k= 1, 2, 3, the operatorS is

S= 1

τ
I + (1− λk)3k.

In this case we shall require that 1/τ is not less than the maximum of the moduli of
the diagonal coefficients of matrix(1− λ)3k, k= 1, 2, 3. Then all elements of matrix
(I/τ + (1− λ)3) will be nonnegative. Therefore, iff ≥ 0, S f≥ 0.

So from one time-layer to the next, the property of nonnegativity off is maintained,
proving Theorem 6.
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THEOREM 7. Let the initial condition be nonnegativity, f 0≥ 0. Then the sum of the
components of the solution of the difference scheme(16) is nonnegative

P∑
l=1

fl ≥ 0

for all whole and fractional time layers ifηn= 0 in (4).

Proof. The matricesT =B/τ − λ3 andS=B/τ + (1− λ)3 for ηn= 0 have the fol-
lowing property:

P∑
k=1

tkl = 1

τ
,

P∑
k=1

skl = 1

τ
, l = 1, . . . , P.

Then

0 ≤
P∑

l=1

fl
1

τ
=

P∑
l=1

fl

P∑
k=1

skl =
P∑

k=1

P∑
l=1

skl fl =
P∑

k=1

(S f)k

=
P∑

k=1

(T f̂ )k =
P∑

k=1

P∑
l=1

tkl f̂ l =
P∑

l=1

f̂ l

P∑
k=1

tkl =
P∑

l=1

f̂ l
1

τ

from which the theorem follows.

Remark1. The restriction onτ in Theorem 6 is not a corollary of the method of proof.
Calculations show that in “complicated” cases (with, for example, large mixed derivatives)
the difference solution at some points can become negative. This occurs in the region of large
x1 (i.e., speed), where the values of the solution are very (exponentially) small. However,
the sum of components of the solution remains nonnegative for anyτ .

Remark2. In considering the scheme (15) with equations of the form

B f̂ − f

τ
= 3 f̂ ,

then the validity of Theorems 2 and 5 remains. By analogy to the proof of Theorem 6, it
is possible to show that the solution of the difference problem will be nonnegative if the
initial function is nonnegative.

8. CALCULATION OF BOOTSTRAP CURRENT

Toroidal plasmas exhibit a number of properties which are not observed in cylindrical
plasmas. One of these is the existence of an additional electric current which is called the
bootstrap current [14]. The bootstrap current is carried mostly by passing electrons. It ap-
pears due to temperature and density gradients and Coulomb collisions between passing and
trapped electrons. The role of the bootstrap current increases with the plasma temperature.
In hot plasmas this current is expected to play an important role, which could noticeably
reduce the cost of a fusion power-plant.
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The bootstrap current has been studied analytically by many authors. One of the most
advanced analytic formulae is that obtained by Hirshman [15].

Besides their undoubted advantages, analytic formulae are only applicable in certain
regions. In order to calculate the bootstrap current rigorously one has to solve the 3D
kinetic equation (1) with special boundary conditions at the internal separatrix or TPB.
These conditions involve step changes in the distribution function

(u
√

g)tr,+ = (u√g)+ + (u√g)−, (36)

(u
√

g)+ − (u√g)− = (u)tr,+((√g)tr,+ − (√g)tr,−)+ α
(
∂u

∂γ0

)
tr,+

(37)

and continuity of the flux normal to the TPB

∑
n=1,4,5

(
j xn

| E∇F |
∂F

∂xn

)
+
+
∑

n=1,4,5

(
j xn

| E∇F |
∂F

∂xn

)
−
=
∑

n=1,4,5

(
j xn

| E∇F |
∂F

∂xn

)
tr,+
, (38)

where “+” and “−” denote limits from regions of co- and counter-passing particles, “tr,+”
and “tr,−” denote the same, but for trapped particles, the functionα is the averaged width
of the drift trajectory [4], the flux is given by

j xn

α =
1√
g

( ∑
m=1,4,5

(
Anm

∂u

∂xm

)
+ Bnu

)
(39)

andF = 0 is the equation for the boundary of the separatrix layer.
Equations (36)–(38) can be incorporated in the difference operators as discussed in

Section 3.1, preserving particle conservation numerically.
Once the distribution function of the electrons is known, the bootstrap current density

can be calculated using integral (22), given in [4].
The main aim of the calculations in this section was to compare numerical results with

the analytic formula from [15] and to study the influence on the bootstrap current of dif-
ferent factors in the numerical approximation of the problem. For this purpose, at external
boundaries, conditions of zero flux were used except at boundariesv0,min andγ0,min, where
the distribution function was set to a Maxwellian distribution. The initial distribution was
also Maxwellian.

A toroidal plasma consisting of electrons and deuterium (β = e, d) was considered with
magnetic fieldB0= 5.8 T, total currentI p= 2 MA and parabolic density, temperature and
current density profiles

nβ(γ )/nβ(0) =
(
0.9
(
1− (γ /γa)

2
)+ 0.1

)
, nβ(0) = 1020 m−3,

Tβ(γ )/Tβ(0) =
(
0.9
(
1− (γ /γa)

2
)+ 0.1

)
, Te(0) = 15 keV, Td(0) = 1 keV,

j (γ )/j (0) = (1− (γ /γa)
2
)
.

The ions were assumed to have a Maxwellian distribution. Circular cross-section magnetic
flux surfaces were considered with major and minor radii of the torusR0= 6 m andγa= 1 m.

Figure 5 shows results of the numerical solution of the 3D kinetic equation (solid line) and
analytical (dashed line) calculations using the formula from [15]. One can see satisfactory
agreement.
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FIG. 5. Bootstrap current density. The solid line shows the numerical solution, the dashed line is the analytical
result.

Several runs emphasised the importance of treating the TPB accurately. In particular, use
of the usual condition of continuity of the distribution function instead of Eqs. (36) and
(37) can give over 30% lower bootstrap current. It was also found that the mixed derivative
Lθ0γ0[u] and the nonlinear dependence of coefficients in the equation play an important role
in formation of the bootstrap current.

9. CALCULATION OF HIGH ENERGY ION DISTRIBUTIONS

In this section we discuss some of the numerical difficulties of modelling high-energy ion
behaviour in thermonuclear experiments and show how advanced approaches, described in
the paper, can help for this application of kinetic codes.

In these problems, theBn terms in the kinetic equation (1) can become dominant in
comparison with theAnn terms. Moreover, the coefficientsBθ0 and Bγ0 can change sign.
In this complicated case it is appropriate to use approximation (7) with allηn= 0. Another
difficulty relates to the presence of the loss term and source in the kinetic equation

∂u

∂t
=

3∑
n,m=1

Lnm[u] − u

τloss
+ S.

Losses can be large (i.e.,τlossis small), so from the point of view of stability it is better to take
it fully implicitly in the scheme. The source can have a delta-function-like dependence on
phase space coordinates and requires use of a nonuniform grid and care in the transformation
for local coordinates and calculation of integrals ofS. The loss and the source terms can be
spread between the first three equations in scheme (15) using weights which sum to unity
and used symmetrically in the last three equations of (15).

In many advanced magnetic fusion devices it is important to take into account the de-
viations of drift trajectories from magnetic flux surfaces for high energy ions [4, 16]. This
results in complicated formulae forAnn, Bn, S, etc. (see [4]), which require the order of
O(N5) arithmetic operations. The authors have developed fast algorithms for the calcula-
tion of trajectory-averaged coefficients—the presentation of these will be the subject of a
later paper. Fast algorithms become extremely important, e.g. for alpha-particle simulations,
since the coefficients are usually time dependent and have to be frequently updated during
calculations.
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The methods described in this paper were successfully used for the numerical simula-
tion of alpha-particle behaviour in past and recent thermonuclear experiments on JET and
TFTR [e.g. 16], allowing accurate calculation of the alpha-particle energy transferred to the
background plasma and the accumulation of helium ash modelled using Eq. (11).

It is important to use Eq. (11) in the numerical scheme, otherwise the alpha-particle
distribution at low speeds accumulates excessively.

In Ref. [16] results of the presented numerical scheme were compared with results of
an alternative approach, based on a Monte-Carlo method. The global characteristics of the
alpha particles, e.g. their heating of the background plasma appeared to be very close.
However, the approach based on finite differences has noticeable advantages. In particular
statistical noise is always present in Monte-Carlo methods, which can require unacceptably
large numbers of alpha particles to produce smooth distribution functions [18]. The method
based on the averaged 3D kinetic equation and finite differences allows one to obtain smooth
distributions within a reasonable calculation time, which can be used not just for comparison
with experimental measurements of particle distributions (e.g. to study MHD instabilities
associated with fast particle distributions), but also as input to other codes.

10. CONCLUSIONS

Numerical methods for the solution of problems for multidimensional kinetic equations
with the Coulomb collision operator have been developed. The approach used is based on
the method of finite differences. Various conservative difference schemes for a numerical
solution of mixed problems for the kinetic equation are presented and theoretically and
numerically investigated. A series of difficulties, related to details of the operators of the
kinetic equation which hamper application of the standard theorems of the theory of dif-
ference schemes, have been overcome. For some classes of coefficients of the equation,
proofs have been presented of (a) theorems of existence and uniqueness of the solution of
the discrete problem, (b) a theorem about absolute stability and convergence in the Banach
spaceL1,h (related to the particle density in a kinetic problem), and (c) nonnegativity of the
numerical solution. With some easing of the requirements on coefficients these theorems are
proved with a restriction on the time step. The methods presented are successfully used in
two of the most advanced kinetic codes, FPP-3D and BANDIT-3D, for modelling tokamak
plasmas. The application to specific kinetic problems, i.e. the calculation of alpha-particle
distributions and bootstrap currents, have been described.
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